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Abstract
From a spectral problem and corresponding Lenard operator pairs, we derive a
Dirac soliton hierarchy associated with a nonlinear Dirac system. A systematic
method is proposed for constructing the N-fold Darboux transformation of
the Dirac system based on its Lax pair. As an application of Darboux
transformation, explicit soliton solutions of the Dirac system are given.

PACS number: 05.45.Yv

1. Introduction

The investigation of the exact solutions of nonlinear evolution equations plays an important role
in the study of nonlinear physical phenomena. For example, the wave phenomena observed in
fluid dynamics, plasma and elastic media are often modelled by the bell-shaped sech solutions
and the kink-shaped tanh solutions. The exact solution, if available, of those nonlinear
equations facilitates the verification of numerical solvers and aids in the stability analysis of
solutions. In the past decades, there has been significant progress in the development of various
methods. Among them, Darboux transformation is a powerful method to get exact solutions of
nonlinear partial differential equations. The key for constructing Darboux transformation is to
expose kinds of covariant properties that the corresponding spectral problems possess. There
have been many tricks to do this for getting explicit solutions to various soliton equations
including the KdV equation, KP equation, Davey–Stewartson equation, Yang–Mills flows, etc
[1–8].

We consider the Dirac spectral problem

ψx = Uψ =
(

q λ + r

−λ + r −q

)
ψ, (1.1)

which was first introduced by Frolov [9]. Time evolution of the scattering data of problem (1.1)
was discussed by Grosse [10] and a detailed analysis of the inverse scattering problem was
provided by Hinton et al [11] for a more general spectral problem. Binary nonlinearization
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and Dirac soliton hierarchy associated with problem (1.1) were fully studied by Ma [12].
A hierarchy of first-degree time-dependent symmetries for the Dirac hierarchy was further
constructed [13]. The first nonlinear Dirac system in the Dirac soliton hierarchy is as follows
[12, 13]:

qt = 1
2 rxx − q2r − r3, rt = − 1

2qxx + qr2 + q3. (1.2)

By gauge transformation

ψ̃x =
(

1 −i
1 i

)
ψ, u = q − ir v = q + ir, (1.3)

and simple calculation, we know that the Dirac spectral problem (1.1) is equivalent to the
standard AKNS spectral problem

ψ̃x =
(

iλ u

v −iλ

)
ψ̃. (1.4)

Also the potentials q and r in the Dirac system are just the real and imaginary parts of the
potentials u and v of the AKSN system. So the Dirac system (1.2) is similar to the coupled
nonlinear Schrödinger system in the AKNS hierarchy. In fact, system (1.2) is exactly a member
of the AKNS-D hierarchy [14]. In this paper, we are interested in the Darboux transformation
and exact solutions of system (1.2) which is still unknown to our knowledge. In section 2, we
derive from problem (1.1) the Dirac soliton hierarchy by using Lenard operator pairs which
is silently different from Ma’s method. The Lax pair for system (1.1) is further obtained. In
section 3, a systematic method is proposed for constructing the N-fold Darboux transformation
for the Dirac system (1.2). In section 4, we show an application of the Darboux transformation
obtained. Soliton solutions of system (1.2) are given by applying its Darboux transformation.
A short conclusion will be given in section 5.

2. The Dirac hierarchy and Lax pairs

To derive the Dirac hierarchy, we introduce the Lenard gradient sequence {Sj , j = 0, 1, . . .}
by

KSj−1 = JSj , Sj |(q,r)=(0,0) = 0, S0 = (0, 0,−1)T (2.1)

where Sj = (
S

(1)
j , S

(2)
j , S

(3)
j

)T
and

K =




∂ 0 2r

0 ∂ −2q

2r −2q ∂


 , J =




0 2 0

−2 0 0

2r −2q ∂


 . (2.2)

Here and in the following context, we denote ∂ = ∂
∂x

. It is easy to see that (2.1) and (2.2)
imply the relation

2rS
(1)
j − 2qS

(2)
j + S

(3)
jx = 0, (2.3)

and Sj is uniquely determined by the recursion relation (2.1). Here the condition Sj |(q,r)=(0,0) =
0 is used to select the integration constant to be zero. A direct calculation gives

S1 =




−q

−r

0


 , S2 =




1
2 rx

− 1
2qx

− 1
2 (q2 + r2)


 , S3 =




1
4 (qxx − 2q3 − 2qr2)

1
4 (rxx − 2r3 − 2q2r)

1
2 (qrx − rqx)


 , · · · .

(2.4)
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Consider the auxiliary problem

ψt = V (m)ψ =
(

V
(m)

11 V
(m)

12

V
(m)

21 −V
(m)

11

)
ψ, (2.5)

where

V
(m)

11 =
m∑

j=0

S
(1)
j λm−j , V

(m)
12 =

m∑
j=0

(
S

(2)
j + S

(3)
j

)
λm−j ,

V
(m)

21 =
m∑

j=0

(
S

(2)
j − S

(3)
j

)
λm−j .

Then the compatibility condition between (1.1) and (2.5) yields the zero-curvature equation
Utm − V (m)

x + [U,V (m)] = 0, which is equivalent to the following hierarchy of equations:

qtm = −2S
(2)
m+1, rtm = 2S

(1)
m+1.

The hierarchy can also be written as(
qtm, rtm

)T = Xm, m = 1, 2, . . . (2.6)

and

Xm =
(

−2S
(2)
m+1

2S
(1)
m+1

)
=

(
0 −2

2 0

)(
S

(1)
m+1

S
(2)
m+1

)
.

The second member in the hierarchy (2.6) with m = 2(X2-flow) is exactly the nonlinear Dirac
system (1.2). From (2.4) and (2.5), we find that the Lax pair for system (1.2) consists of the
spectral problem (1.1) and the following auxiliary problem:

ψt = V (2)ψ =
(

1
2 rx − qλ − 1

2qx − 1
2 (q2 + r2) − rλ − λ2

− 1
2qx + 1

2 (q2 + r2) − rλ + λ2 − 1
2 rx + qλ

)
ψ. (2.7)

The Lax pairs (1.1) and (2.7) shall play a key role in the construction of the Darboux
transformation for system (1.2).

3. Darboux transformation

In this section, we shall construct an N-fold Darboux transformation for the Dirac system
(1.2). The Darboux transformation is actually a special gauge transformation

ψ̃ = T ψ (3.1)

of the solutions of the Lax pairs (1.1) and (2.7). It is required that ψ̃ also satisfies the Lax
pairs (1.1) and (2.7) with some Ũ and Ṽ (2), i.e.

ψ̃x = Ũ ψ̃, Ũ = (Tx + T U)T −1, (3.2)

ψ̃ t = Ṽ (2)ψ̃, Ṽ (2) = (Tt + T V (2))T −1. (3.3)

By cross differentiating (3.2) and (3.3), we get

Ũ t − Ṽ (2)
x + [Ũ , Ṽ (2)] = T

(
Ut − V (2)

x + [U,V (2)]
)
T −1, (3.4)

which implies that in order to make system (1.2) invariant under the gauge transformation
(3.1), we should require that Ũ and Ṽ (2) have the same forms as U and V (2) respectively.
At the same time the old potentials q and r in U,V (2) will be mapped into new potentials q̃
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and r̃ in Ũ , Ṽ (2). This process can be done continually and usually it may yield a series of
multi-soliton solutions. We can construct the N -fold Darboux transformation for the Dirac
system (1.2) as follows.

Let (φ1(x, t, λ), φ2(x, t, λ))T and (ψ1(x, t, λ), ψ2(x, t, λ))T be two basic solutions of
the spectral problem (1.1) and (2.7), and use them to define two linear algebraic systems for
Ak,Bk, Ck and Dk (0 � k � N − 1)

N−1∑
k=0

(Ak + Dk + αjBk)λ
k
j = −λN

j , 1 � j � 2N, (3.5)

N−1∑
k=0

(Ck + αjAk − αjDk)λ
k
j = −αjλ

N
j , 1 � j � 2N (3.6)

with

αj = φ2(λj ) − γjψ2(λj )

φ1(λj ) − γjψ1(λj )
, 1 � j � 2N, (3.7)

where λj and γj are some parameters suitably chosen such that determinants of the coefficients
for (3.5) and (3.6) are nonzero. Hence, Ak,Bk, Ck and Dk are uniquely determined by (3.5)
and (3.6). Now we let

T =
(

A(λ) B(λ)

C(λ) D(λ)

)
= IλN +

N−1∑
k=1

Qkλ
k, Qk =

(
Ak + Dk Bk

Ck Ak − Dk

)
, (3.8)

which is an Nth-order polynomial in λ with matrix coefficient. From (3.5), (3.6) and (3.8), it
is easy to see that det T (λ) is the 2N th-order polynomial of λ, and λj (1 � j � 2N) are all
its roots. Therefore, we have

det T (λ) =
2N∏
j=1

(λ − λj ). (3.9)

Proposition 1. The matrix Ũ determined by (3.2) has the same form as U, that is,

Ũ =
(

q̃ λ + r̃

−λ + r̃ −q̃

)
,

where the transformations between q, r and q̃, r̃ are given by

q̃ = q − BN−1 − CN−1, r̃ = r + 2DN−1. (3.10)

The transformation (ψ, q, r) → (ψ̃, q̃, r̃) is called a Darboux transformation of the spectral
problem (1.1).

Proof. Let T −1 = T ∗/det T and

(Tx + T U)T ∗ =
(

f11(λ) f12(λ)

f21(λ) f22(λ)

)
. (3.11)

It is easy to see that f11(λ) and f22(λ) are 2Nth-order polynomials in λ, and f12(λ) and f21(λ)

are (2N+1)th-order polynomials in λ.
On the other hand, making use of (1.1), (3.5)–(3.7), we find that

αjx = −λj + r − 2qαj − (λj + r)α2
j ,

A(λj ) = −αjB(λj ), C(λj ) = −αjD(λj ).
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From the above equalities, it is easy to verify that all λj (1 � j � 2N) are roots of
fkj (λ) (k, j = 1, 2), which together with (3.9) implies that fkj (λ) may be divided by det T ,
and thus (Tx + T U)T −1 is a first-order polynomial in λ with matrix coefficients, that is

Tx + T U = (Ũ 1λ + Ũ 0)T , (3.12)

where the matrices Ũ 1(x, t) and Ũ 0(x, t) do not depend on λ.
We denote U = U1λ + U0, with

U1 =
(

0 1
−1 0

)
, U0 =

(
q r

r −q

)
.

Comparing the coefficients of λN+1 and λN in (3.12) yields the following:

• (N + 1)th coefficient:

Ũ 1 = U1 =
(

0 1
−1 0

)
,

• N th coefficient:

Ũ 0 = U0 + QN−1U1 − Ũ 1QN−1

=
(

q − BN−1 − CN−1 r + 2DN−1

r + 2DN−1 −q + BN−1 + CN−1

)
=

(
q̃ r̃

r̃ −q̃

)
,

where q̃ and r̃ are given by (3.10).
The proof is completed. �

Next, we try to prove that Ṽ (2) in (3.3) has the same form as V (2) under the transformations
(3.1) and (3.10).

Proposition 2. The matrix Ṽ (2) in (3.3) has the same form as V (2) under the same
transformations (3.1) and (3.10).

Proof. In a way similar to proposition 1, we can prove that (Tt + T V (2))T −1 is a second-order
polynomial in λ with matrix coefficients, that is

Tt + T V (2) = (Ṽ 2λ
2 + Ṽ 1λ + Ṽ 0)T . (3.13)

We write V (2) in the form V (2) = V2λ
2 + V1λ + V0, with

V2 =
(

0 −1
1 0

)
, V1 =

(−q −r

−r q

)

V0 =
(

1
2 rx − 1

2qx − 1
2 (q2 + r2)

− 1
2qx + 1

2 (q2 + r2) − 1
2 rx

)
.

Comparing the coefficients of λN+j (j = 0, 1, 2) yields the following:

• (N + 2)th coefficient:

Ṽ 2 = V2 =
(

0 −1

1 0

)
.

• (N + 1)th coefficient:

Ṽ 1 = V1 + QN−1V2 − Ṽ 2QN−1

=
(−q + BN−1 + CN−1 −r − 2DN−1

−r − 2DN−1 q − BN−1 − CN−1

)
=

(−q̃ −r̃

−r̃ q̃

)
.
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• N th coefficient:

Ṽ 0 = V0 + [QN−1, V1] + QN−2V2 − Ṽ 2QN−2. (3.14)

Again comparing the coefficient of λN−1 in (3.12), we find that

QN−1x + [QN−1, U0] + QN−2U1 − Ũ 1QN−2 = 0. (3.15)

From (3.10) implies an identity

2(q̃ − q)DN−1 + (r̃ − r)(BN−1 + CN−1) = 0. (3.16)

By using (3.15) and (3.16), direct calculation shows that Ṽ 0 possess the same form as V0.
The proof is completed. �

Propositions 1 and 2 show that the transformations (3.1) and (3.10) change the Lax pairs
(1.1) and (2.7) into another Lax pairs (3.2) and (3.3) in the same type. Therefore both the Lax
pairs lead to the same Dirac system (1.2). We call the transformation (ψ, q, r) → (ψ̃, q̃, r̃) a
Darboux transformation of the Dirac system (1.2). In summary, we arrive at

Theorem 1. The solutions (q, r) of the nonlinear Dirac system (1.2) are mapped into their
new solution (q̃, r̃) under Darboux transformations (3.1) and (3.10), where BN−1, CN−1 and
DN−1 are given by (3.5) and (3.6).

4. Application of the Darboux transformation

In this section, we shall apply the Darboux transformation (3.10) to construct explicit solutions
of the nonlinear Dirac system (1.2). As usual we make a Darboux transformation starting
from a special solution of system (1.2). Substituting q = r = 0 into the Lax pairs (1.1) and
(2.7), we find that two basic solutions can be chosen as

φ(λ) =
(

sin(λx − λ2t)

cos(λx − λ2t)

)
, ψ(λ) =

(− cos(λx − λ2t)

sin(λx − λ2t)

)
.

According to (3.7), we have

αj = cos ξj − γj sin ξj

sin ξj + γj cos ξj

, 1 � j � 2N, (4.1)

where γj are constants, and ξj = λjx − λ2
j t . We shall discuss only the case N = 1.

Solving the linear algebraic system (3.5) and (3.6) yields

2D0 = (λ1 − λ2)(α1 + α2)

α1 − α2
, B0 + C0 = (λ1 − λ2)(α1α2 − 1)

α1 − α2
. (4.2)

Substituting (4.1) and (4.2) into the Darboux transformation (3.10), we then obtain a kind of
soliton solutions for the Dirac system (1.2),

q̃ = (λ2 − λ1)[(1 − γ1γ2) cos(ξ1 + ξ2) − (γ1 + γ2) sin(ξ1 + ξ2)]

(1 + γ1γ2) sin(ξ2 − ξ1) + (γ2 − γ1) cos(ξ2 − ξ1)
,

r̃ = (λ1 − λ2)[(1 − γ1γ2) sin(ξ1 + ξ2) + (γ1 + γ2) cos(ξ1 + ξ2)]

(1 + γ1γ2) sin(ξ2 − ξ1) + (γ2 − γ1) cos(ξ2 − ξ1)
,

(4.3)

where ξ1 = λ1x − λ2
1t, ξ2 = λ2x − λ2

2t. The plots for solutions q̃ and r̃ are given in figure 1.



N-fold Darboux transformation and soliton solutions for a nonlinear Dirac system 1069

-5

-2.5

0

2.5

5

x

-10

-5

0

5

10

t

-1

0

1
q

-5

-2.5

0

2.5

5

x

-4
-2

0
2

4
x

5

5.25

5.5

5.75

6

t

-0.2
0

0.2
0.4
0.6

r

-4
-2

0
2

4
x

Figure 1. Soliton solutions q̃ and r̃ with λ1 = 0.01, λ2 = −0.2, γ1 = 0.1, γ2 = 0.3.

5. Conclusions

In this paper, we have constructed the N-fold Darboux transformation (3.10) for the nonlinear
Dirac system (1.2) based on its Lax pairs. As an application, we construct an explicit
solution (4.3) of the Dirac system. If the solution (4.3) is further taken as a new seed solution,
we can make the Darboux transformation (3.10) once again and engender another new solution.
This process can be done continually and yield a series of soliton solutions of the Dirac system
in theory. The N-fold Darboux transformation (3.10) presented here has some merits. Firstly,
the solution (q̃, r̃) in (3.10) is the N-fold Darboux transformation of the solution (q, r). It can
be interpreted as a nonlinear superposition of the initial solution (q, r) and N-soliton solution.
It contains all pure N-soliton solutions of the Dirac system (1.2) in a unified form. Therefore, it
provides a unified and explicit N-soliton solutions for the Dirac system. Secondly, according
to the Darboux transformation (3.10), the solutions of the Dirac system (1.2) are reduced
to solving a linear algebraic system (3.5)–(3.6) which is easy to produce its multi-soliton
solutions by symbolic computation on a computer.
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